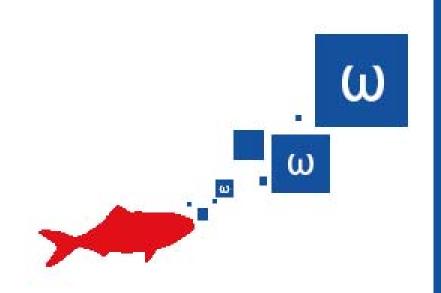


APORTACIONES CIENTÍFICAS

Estudios publicados por el FROM

Madrid, 24 de octubre de 2011



LOS OMEGA-3 EN LOS PRODUCTOS PESQUEROS

DECLARACIONES NUTRICIONALES Y PROPIEDADES SALUDABLES DE LOS PESCADOS Y MARISCOS

Lunes 29 de noviembre de 2010 - Lugar: FROM Calle de Velázquez 147, Madrid - Salón de actos Horario: De 10:00 a 13:30 - SRC 91 447 07 59

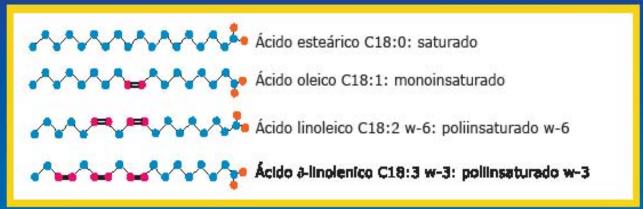
Por nuestro pescado de hoy y de mañana

Mary Transp. Ball

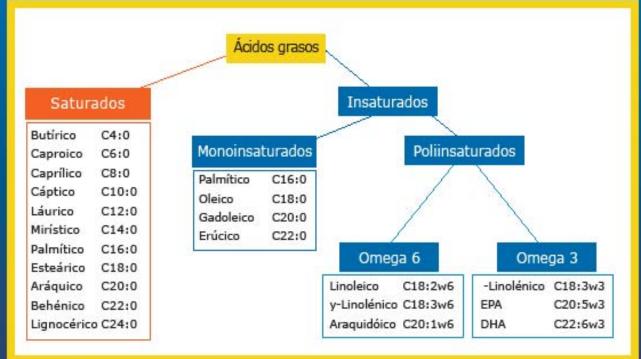
"Contenido en Ácidos grasos omega-3 en la merluza y su papel en la prevención de enfermedades cardiovasculares"

Dra. Guadalupe Piñeiro BPS Nutrition Support Servicio de Farmacia CHOP

JUSTIFICACIÓN


LEGISLACIÓN: El reglamento 1924/2006

- Declaraciones nutricionales o "de contenido",
- Declaraciones de propiedades saludables.
- Declaraciones de reducción del riesgo de enfermedad.


•La *US Food & Drug* (FDA) ya ha autorizado las alegaciones comerciales cualificadas de <u>presencia de ácidos grasos w-3</u> en aquellos alimentos convencionales que los contengan y este organismo manifiesta: "<u>que los alimentos que contengan EPA y DHA, pueden alegar que pueden ayudar a reducir el riesgo de la "enfermedad coronaria".</u>

En este sentido los trabajos de investigación centrados en la composición de AGPI w-3 de la merluza apoyaran a establecer declaraciones en las tres categorías nutricionales, de propiedades saludables y de reducción del riesgo.

ÁCIDOS GRASOS DE INTERÉS ALIMENTARIO

Esquema de las moléculas de ácidos grasos.

AGPI w-6:

Ac. linoleico (AL)
Ac Araquidonico (ARA)

AGPI w-3:

Ac. Alfalinolenico (ALA)
Ac eicosapentanoico (EPA)

Ac. Docosahexaenoico (DHA)

FUENTES DE AGPI w-3

- ALA: Nueces, germen de trigo, aceites vegetales de linaza, colza cártamo, soja, onagra y lino. Carne de rumiantes.
- El pescado, es la principal y la más importante fuente de AGPI w-3 (EPA y DHA).
 - Es el único alimento natural que contiene AGPI w-3 en proporciones adecuadas.
- Tradicionalmente se cree que los "pescados azules", especialmente el cuarteto formado por la sardina, la caballa, el jurel y el boquerón, son los únicos que contienen AGPI w-3.
- Estudios de investigación recientes, indican que el "pescado blanco", aún teniendo menos grasa que el azul, destaca por su contenido en AGPI w-3.
- Dentro de la familia de "pescados blancos", se considera a la merluza como uno de los más representativos tanto fresca como congelada, en sus diferentes presentaciones (filetes, centros, lomos, ventresca...) y así como en platos preelaborados (varitas, filetes empanados...)

ESPECIES DE MERLUZAS COMERCIALIZADAS

- Merluza europea (Merluccius merluccius)
- Merluza del Pacífico (Merluccius productus)
- · Merluza de Boston (Merluccius bilinearis),
- · Merluza del Senegal (Merluccius senegalensis)
- Merluza del Cabo (Merluccius capensis y paradoxus)
- Merluza argentina (Merluccius hubbsi)
- Merluza austral (Merluccius australis)
- · Merluza peruana (Merluccius gayi peruanus).

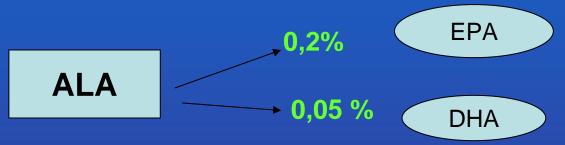
Es necesario realizar investigaciones centradas en la composición en AGPI w-3 de la merluza y aplicarlos en las dietas cardiosaludables.

El interés de los AGPI w-3 comenzó cuando Dyerberg, estableció una relación entre la ingesta de AGPI w-3 y el riesgo de padecer ECV

La dieta tradicional de los Inuit, está basada en el consumo de pescado y mamíferos marinos, todos ricos en AGPI w-3 especialmente en DHA y EPA.

Los Inuit presentaban una baja tasa de mortalidad cardiovascular con respecto a la población occidental, a pesar de consumir dietas ricas en grasa y colesterol. Zonas geográficas donde se consume gran cantidad de pescado, como puede ser la población japonesa y en algunas comunidades de nativos en Canadá

Menor índice de enfermedades cardiacas


Desde entonces se han llevado a cabo numerosos estudios epidemiológicos y de intervención nutricional que han demostrado que la ingesta de una dieta rica en AGPI w-3 reduce la mortalidad coronaria y la muerte súbita cardiaca.

RUTAS METABÓLICAS DE LOS AGPI W-3/W-6

- Las plantas y microorganismos, dotados de capacidad de síntesis de ácidos grasos, regulan la fluidez de sus membranas equilibrando la proporción de ácidos grasos saturados, insaturados y poliinsaturados que introducen en ellas.
- Esta capacidad de sintésis no la poseen ni el hombre ni animales vertebrados:
 - Àcidos grasos esenciales y deben ser incorporados mediante la alimentación.
 - Regulación del balance orgánico Ac. Grasos w-6/w-3 depende principalmente de los ac. Grasos obtenidos de la alimentación.

RUTAS METABÓLICAS DE LOS AGPI W-3/W-6

 Aportación de concentraciones adecuadas de EPA y DHA en las membranas celulares al organismo de forma regular y en cantidades suficientes por una dieta rica en pescados y mariscos.

- El alto contenido de DHA y EPA en el pescado es consecuencia del consumo de fitoplancton (rico en AGPI w-3). El contenido de AGPI w-3 varía en función :
 - Especie de pescado,
 - -Localización,
 - -Estación del año
 - -Disponibilidad de fitoplacton.

Recomendaciones dietéticas AGPI w-3

- El Instituto de Medicina(IOM)(2002): Informe no datos cientificos suficientes para establecer ingestas adecuadas ni de referencia (DRI) para EPA ó DHA.
- Technical Committee on Dietary Lipids of the International Life Science Institute(ILSI) North America, workshop washington junio 2008; reconsideración fundamentos que justifiquen DRI para EPA+DHA en las principales enfermedades crónicas de Estados Unidos, enf. Cardiovasculares, cáncer y deterioro cognitivo.
 - Existen evidencias desde múltiples trabajos científicos que demuestran una clara relación inversa entre ingesta de EPA+DHA y riesgo de enfermedades cardiovasculares mortales y posiblemente no mortales, proporcionando evidencias que apoyan las DRI para EPA+DHA: 250-500mg/día
 - Baja Conversión de ALA de la dieta en EPA y DHA, los niveles protectores de EPA y DHA en los tejidos solo pueden alcanzarse con la ingesta mediante el consumo directo de estos ácidos grasos

	Affo	Recomendación
Organización		
Conferencia Eurodieta ¹²¹	2000	200 mg/día
Agencia Francesa de Seguridad alimentaria de los alimentos y Centro Nacional de Investigaciones Científicas(Francia) ¹²²	2001	500 mg/día
Comité Científico Asesor sobre Nutrición de Inglaterra ¹²³	2004	Tomar pescado 2 veces semana, 1 ración de pescado graso
La Sociedad Internacional para el Estudio de Ácidos Grasos y Lípidos (ISSFAL) ¹²⁴	2004	500 mg/día
Departamento de Salud de Australia y Nueva Zelanda ¹³⁵	2005	442 mg/día para hombre, 318 mg/día para mujer*
Sociedad Americana del Corazón (AHA) 109	2006	Tomar pescado 2 veces semana, preferentemente pescado graso
Consejo de Salud de Bélgica ¹³⁶	2006	Mínimo de 0,3% de las calorías (~667mg/día)
Sociedad de Dietistas de Canadá ¹²⁷	2007	Tomar pescado 2 veces semana, ambas raciones pescado graso o 500mg/día.
Consejo de Salud de Holanda ¹²⁸	2006	Tomar pescado/2 veces semana, 1 ración de pescado graso, para alcanzar DRI de 450 mg de AGPI w-3

PRINCIPALES RECOMENDACIONES AGPI W-3

^{*}Las recomendaciones de Australia y Nueva Zelanda son para EPA+DHA+ DPA.

Objetivos

OBJETIVOS

Objetivo principa

Analizar la composición en ácidos grasos en dos especies de merluza:
 Merluccius capensis y Merluccius paradoxus y cuantificar su contenido en ácidos grasos w-3.

Objetivos secundarios

- Estudiar la biodisponibilidad de la ingesta de ácidos grasos w-3 del pescado y por tanto relacionar el nivel de AGPI w-3 en plasma con el menor riesgo de desarrollar enfermedades cardiovasculares.
- Establecer una ingesta optima de merluza que permita en función de su contenido en ácidos grasos w-3 incluirla en dietas cardiosaludables.
- Estudiar los efectos de los diferentes métodos de cocción sobre la integridad de los ácidos grasos w-3 de la merluza a estudio.

Year of

METODOLOGIA

Obtención e identificación de las muestras

Las muestras analizadas corresponden a diferentes lotes de merluza de las especies *Merluccius capensis* Merluccius paradoxus, capturados en aguas de Namibia durante los meses de marzo, abril del año 2007.

Muestras en su estado natural y congeladas.

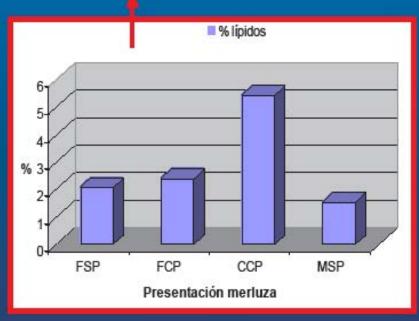
Filetes de merluza sin piel (FSP). Filetes de merluza con piel (FCP) Medallones de merluza sin piel (MSP) Centros de merluza con piel (CCP)

Muestras cocinadas al microondas.

Filetes de merluza sin piel Filetes de merluza con piel Medallones de filetes de merluza sin piel Lomos de merluza con piel cocinados (LCP) De cada presentación: (FSP, FCP, MSP, CCP) se han tomado como mínimo 10 muestras seleccionadas aleatoriamente de bolsas que contenia entre 8-10 piezas.

Muestras hervidas

Lomos de merluza con piel Medallones de filetes de merluza sin piel


 De cada Unidad (FSP, FCP, MSP, CCP) previamente triturado se han tomado muestras, que cada una contiene 1 gramo de este triturado para su análisis posterior. Cada una de estas muestras se analizó por triplicado.

COMPOSICIÓN % LÍPIDOS

Estudio Calipso AFSA	0,59%
SENBA	0,85%- 0,95%
Programa DIAL	1,8 % (M.fresca) 2% (M.congelada)
Internet	0,7% 1.28% 1,6%
Tesis	2,9±1,75%

Nombre	Nombre científico	Lípidos
Merluza austral	Merluccius australis	1,60 %
Merluza de Boston	Merluccius bilínearis	2,60 %
Merluza del Cabo	Merluccius capensis	1,60 %
Merluza argentina	Merluccius hubbsi 1,	
Merluza europea	Merluccius merluccius	1,59 %
Merluza del Pacífico	Merluccius productus	1,61 %
Merluza del Senegal	Merluccius senegalensis	1,08 %

Esta variabilidad en los datos nos hace reflexionar sobre la información que los profesionales dedicados a la nutrición pueden obtener en función de las fuentes consultadas.

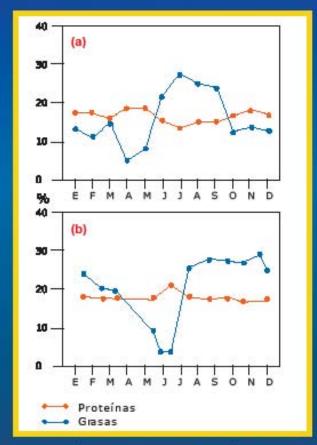
Para realizar un estudio profundo sobre composición lipídica en pescado es imprescindible conocer de qué especie se trata, lugar y época de captura y analizar que factores influencian la composición lipídica de los mismos.

COMPOSICIÓN % LÍPIDOS

CLASIFICACIÓN CLÁSICA

- Blancos: < 2,5%
 Lenguado, Merluza, Abadejo, Corvina,
 Brótola, Mero, Pescadilla, Pez Espada,
 Bacalao, Raya, Carpa, Lucio, Róbalo,
- Semigrasos : 2,5-6%
 Besugo, Bonito, Palometa, Trilla,
 Salmonete.

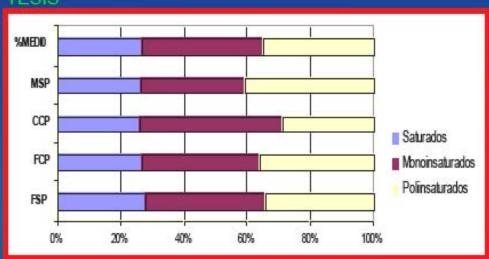
Trucha.


Grasos o "azules": >6%
 Arenque, Salmón, Atún, Sardina,
 Boquerón, Caballa, Anchoa, Lisa,
 Pez ángel, Pez palo, Gatuzo, Surubí,
 Bagre, Sábalo, Perca...

Diferencia Principal: Cantidad y calidad de lípidos que pueden variar por diferentes factores.

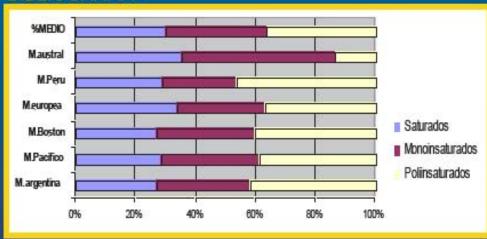
Merluza Argentina

Mes	% lípido:
Febrero	3,40
Marzo	1,10
Abril	1,70
Julio	1,30
Diciembre	1,40


Teals 2,9±1,75%

Variación mensual del contenido en proteínas y grasas del arenque (a) y caballa (b).

COMPARACIÓN % ÁCIDOS GRASOS


TESIS

 % Saturados es menor: 26,6±0,8% versus 30,2±3,6

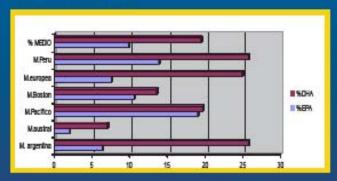
% Monoinsaturados es mayor:
 38,5±5,93 versus
 32,0±3,2

BIBLIOGRAFÍA

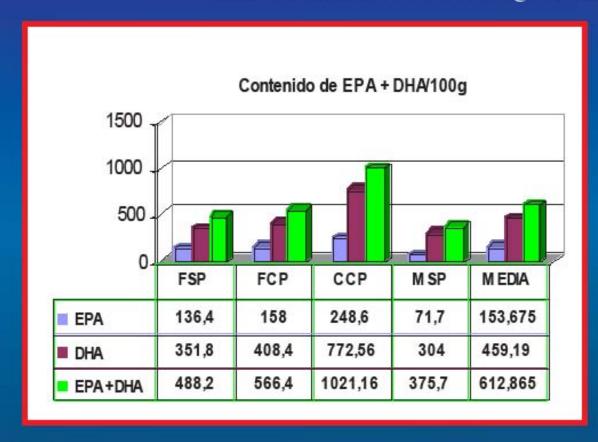
%Poliinsaturados:


Presentaciones: 29%(CCP) y 41% (MSP)

13,2 %(M. austral) y 49,9 % (M.pacifico)


COMPARACIÓN % AGPI

TESIS


BIBLIOGRAFIA

% EPA: 7,1 ± 1,3

% DHA: 22,1 ± 4,8

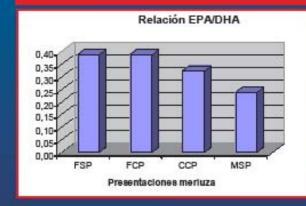
CONTENIDO EN MG/100g DE EPA/DHA

EPA+DHA=612,9±283,21

	mg/100g	
BIBLIOGRAFÍA	EPA	DHA
M. Argentina	90	350
M. Austral	32	112
M. Pacifico	304	620
M. Boston	273	624
M. Europea	119	512
SENBA	50-61	80-110
CALIPSO	28	123
Domingo	240	240

CONTENIDO Y RELACIÓN EPA / DHA

Tipo de Pescado	EPA+DHA g/100g	Relación EPA/DHA
Atún rojo	1,50	0,32
Bonito en lata	0,27	0,21
Atún blanco lata	0,86	0,37
Salmón atlántico piscifactoría	2,15	0,47
Salmón atlántico	1,84	0,29
Salmón pacífico rojo	1,23	0,76
Caballa	1,20	0,72
Arenque	2,01	0,82
Trucha piscifactoría	1,15	0,41
Trucha salvaje	0,99	0,90
Fletán	0,47	0,24
Bacalao	0,16	0,03
Abadejo	0,24	0,47
Pez espada	0,77	0,13
Mero	0,25	0,16
Camarón	0,32	1,19
Bagre piscifactoría	0,18	0,38
Bagre salvaje	0,24	0,73

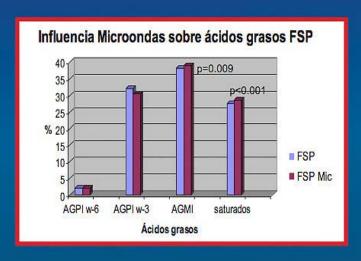

Contenido en EPA y DHA	Ministerio agricultura USA

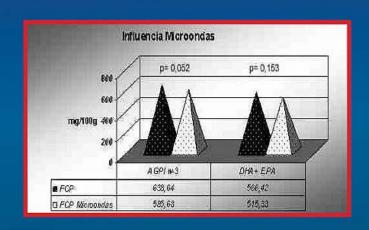
Tipo de Pescodo	EPA+DHA g/100g	Relación EPA/DHA
Salmón	2,64	1,40
Caballa	0,84	1,15
Salmonete	0,71	1,63
Morluza	0,48	0,50
Sardina	0,43	0,72
Anchoa	0,44	0,76
Atún	0,19	0,36
Lenguado	0,37	0,76
Calamar	0,47	0,81

Contenido en EPA+DHA de diferentes peces capturados en Cataluña.

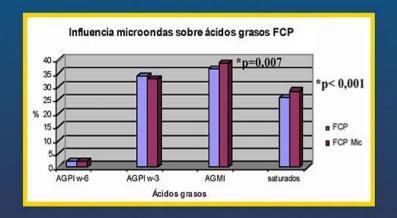
TESIS

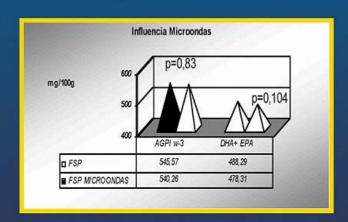
RELACIÓN EPA/DHA= 0,33± 0,07




DHA/EPA		
Marca (Laboratorio)	(mg/capsula)	Pescado del que se extrae el aceite
Finest Natural (Walgreen)	240/360	Sardinas, anchoa, sardineta, salmon
GNC (General Nutrition Corporation)	240/600	Pescado graso
Nature Made (Nature Made Nutritional		
Products)	288/432	Anchoa, sardina
Natrol (Natrol)	120/180	Anchoa, sardina
Nature's Bounty (Nature's Bounty)	120/180	Arenque, anchoa, caballa, sardina, salmon
Omega Works (Windmill Health Products)	200/300	Sardina, anchoa, salmon, arenque
Omega Works (Windmill Health Products)	408/544	Anchoa, caballa, sardina
PharmAssure (PharmAssure)	120/180	Pescado graso
PharmAssure (PharmAssure)	200/240	No especifica
Rite Aid (Rite Aid Corporation)	120/180	Pescado graso
Safeway Select (Premium Quality)	120/180	Anchoa, sardina, caballa
Springvalley (Leiner Heath Products)	300 total	Sardina
Sundown Naturals (Sundown)	120/180	Arenque, anchoa, caballa, salmon, sardina
Sundown Naturals (Sundown)	300 total	Arenque, anchoa, caballa, sardina, salmon, eperlano, atun, anguila de arena, menhade
Sunmark (McKesson)	200/240	Anchoa, bonito, caballa, sardina
Sunmark (McKesson)	120/180	Anchoa, bacalao, arenque, salmon, sardina, fletan, caballa abadejo, tiburon, sardineta
Lovaza (GSK)	375/465	No especifica
Omacor (Ferrer, Astrazeneca, Pzicer, Pronova, Solvay, Piere Fabre)	375/465	No especifica
Zodin (Pronova, Ferrer, Galenica)	380/460	No especifica

Composición de diferentes productos de aceite de pescado comercializados en USA y Europa.


INFLUENCIA DE LOS DIFERENTES MÉTODOS DE COCCIÓN DEL PESCADO SOBRE LA INTEGRIDAD Y ESTABILIDAD DE AGPI W-3

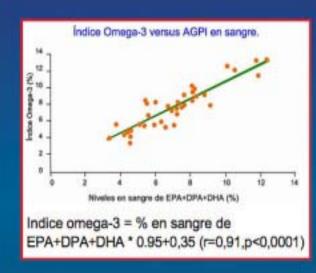

Influencia en microondas de Filetes de merluza sin piel sobre AGPI w-3.

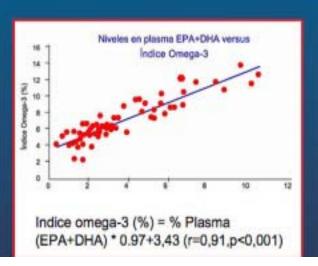
Influencia en microondas de Filetes de merluza con piel sobre AGPI w-3.

BIODISPONIBILIDAD DE AGPI W-3:

EPA Y DHA

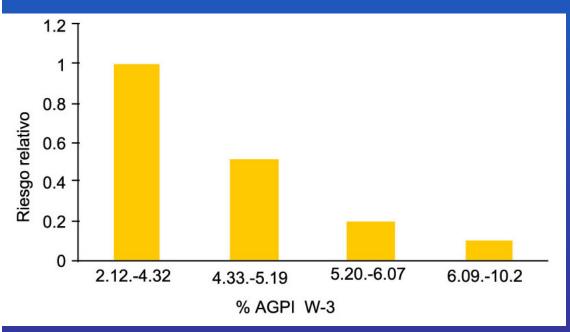
ÍNDICE W-3

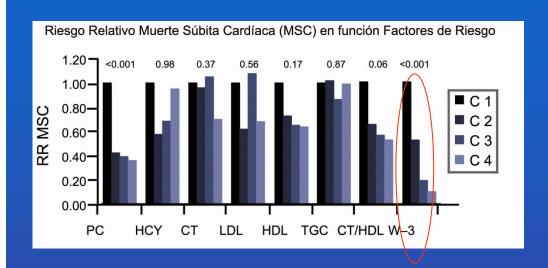

Basado en el hecho de que la membrana de los eritrocitos refleja el contenido de AGPI w-3 de la membrana cardiaca.


- Es un índice propuesto por Harris.
- Índice w-3 es el porcentaje de EPA+DHA expresado como % del total de ácidos grasos en eritrocitos.
- Es un índice relacionado con la biodisponibilidad de EPA y DHA.

Indicador de ingesta de AGPI w-3.

 Biomarcador utilizado para expresar la relación existente entre el porcentaje de EPA+DHA expresado como % del total de ácidos grasos en eritrocitos.

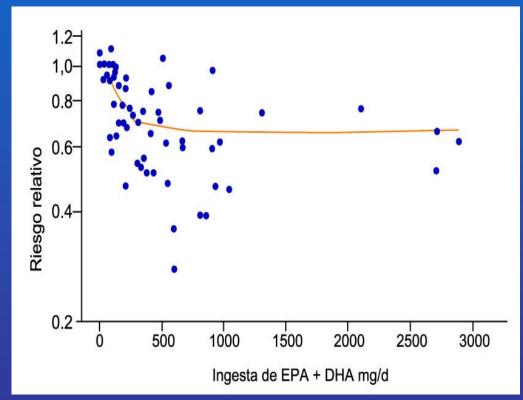

Riesgo de muerte por ECV.


IMPORTANCIA DEL INDICE OMEGA-3

El objetivo de sus trabajos fue encontrar un índice que permitieses asociarlo como "factor de riesgo en mortalidad por ECV "y poder estratificarlo

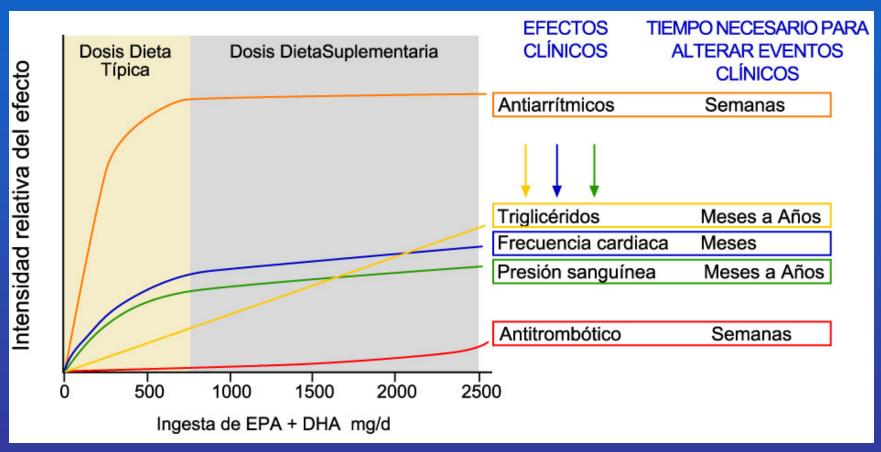
Riesgo relativo de muerte súbita cardiaca en función del rango de valores de los niveles en sangre de AGPI w-3 (Estudio CHS)

IMPORTANCIA DEL INDICE OMEGA-3

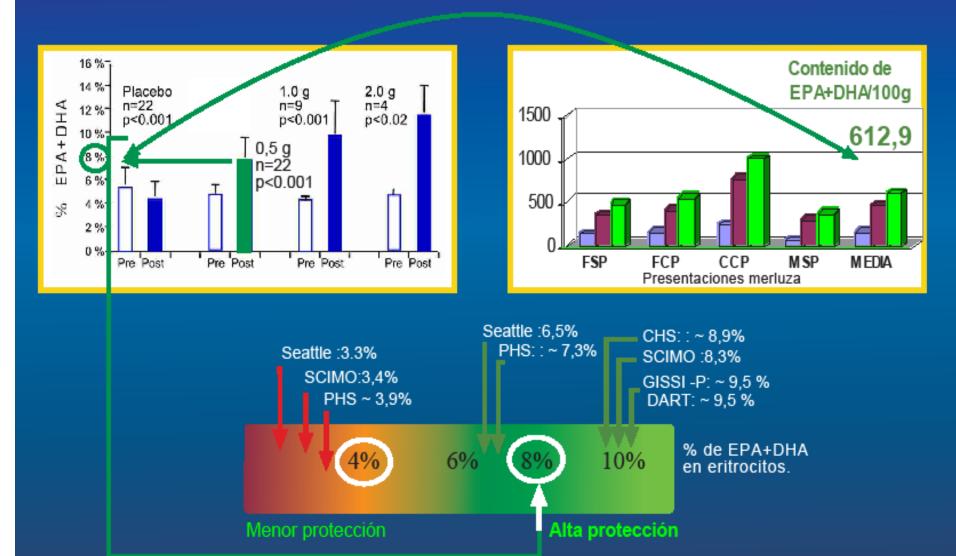

Riesgo relativo multivariante para muerte súbita cardiaca (RR MSC) por cuartiles de niveles de AGPI w-3 en sangre, comparados con otros factores de riesgo tradicionales.

Wilheim: Pacientes portadores de desfibrilador cardioversor implantable

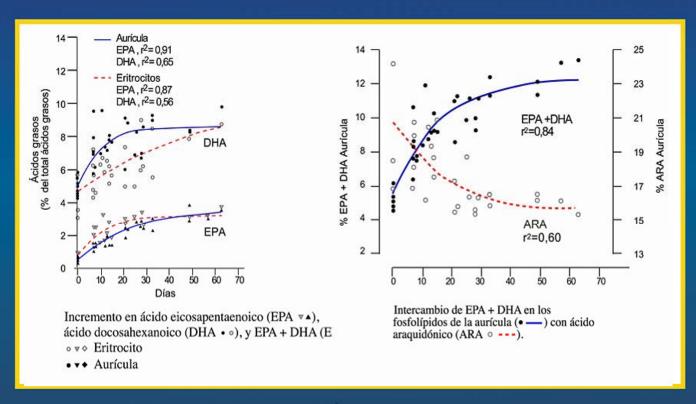
El índice w-3 fue el único indice predictor independiente de arritmias ventriculares en un seguimiento de 3, 6 y 9 meses


Efectos cardiosaludables de AGPI w-3

 Mozaffarian :Estudios observacionales, casos-control, de cohortes y ensayos clínicos aleatorizados más importantes que relacionan el consumo de AGPI w3 procedente del pescado con muerte por ECV.


Relación entre ingesta de EPA+DHA y riesgo de muerte por ECV .

Resultado de 4 EC aleatorizados:,Inglaterra(DART),Italia(GiSSI), Japón y Gales.y con los acumulados de estudios prospectivos de cohortes indican la probable relación dosis respuesta para muerte por ECV



Dosis-Respuestas potenciales y tiempo necesario para alterar los eventos clínicos de los efectos fisiológicos de ingesta de pescado o aceite de pescado.

RELACIÓN ENTRE ÍNDICE W-3 Y RIESGO DE PADECER ENFERMEDADES CARDIOVASCULARES

INCORPORACIÓN DE AGPI W-3 EN LOS FOSFOLÍPIDOS DE LA MEMBRANA DEL MIOCARDIO

p<0,001,DHA(2%) versus EPA(0,9%) en aurícula

FUENTE: Modificado de Metcalf.

RESUMIENDO:

Del análisis de las muestras de merluza analizadas podemos afirmar

➤ El % medio de Ácidos grasos: 2,9 ± 1,75

Clasificación clásica: "azules," "semigrasos" y "blancos" deberían diferenciarse por la cantidad y calidad de su grasa que varia en función de una curva estacional.

- > Perfil lipídico:
 - Ácidos grasos saturados: 26,6 ± 0,8%
 - Ácidos grasos poliinsaturados: 35,1 ± 4,94%.

w-3: 32,1 ± 5,15%

 $w-6: 1,7 \pm 0,95\%$


- ➤ Los ácidos grasos <u>DHA y EPA</u> fueron los más representativos de la familia w-3 : 612,9 ± 283,21 mg/100g, destacando el contenido de DHA en todas las muestras analizadas.
 - > Las presentaciones con piel contienen mayor cantidad de AGPI w-3.

- A diferencia de los suplementos de aceite de pescado en los que el nivel de EPA es superior a DHA. El contenido de DHA en la merluza es aproximadamente tres veces superior a EPA en todas las muestras analizadas.
- Los estudios realizados sobre la biodisponibilidad de los AGPI w-3 del pescado demuestran que la ingesta de 500 mg de EPA+DHA alcanzan niveles en sangre y eritrocitos que se corresponden con un índice omega-3 de 8%, lo que se correlaciona con una mayor protección frente a riesgo de enfermedad cardiovascular.
- Con una ración de 100 g de merluza -en sus diferentes presentaciones- se alcanzan las recomendaciones del Technical Committee on Dietary Lipids of the International Life Sciences Institute (ILSI)) North America.

- Existen evidencias que demuestran clara relación inversa entre la ingesta de EPA+DHA y el riesgo de enfermedades cardiovasculares mortales y posiblemente no mortales, proporcionando evidencias que apoyan las DRI para EPA+DHA entre 250 y 500 mg/día.
- Los métodos de cocción mediante horno microondas no alteran la integridad de las AGPI w-3 contenidos en la merluza.
- La merluza analizada aparte de constituir un excelente alimento por ser una excelente fuente de proteínas y minerales así como por su perfil lipídico, conteniendo cantidades adecuadas de AGPI w-3, puede utilizarse como pescado de referencia de consumo habitual e incluirla en dietas cardiosaludables.

Muchas gracias por su atención

