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A number of factors affect the consumption risk frommercury in fish, includingmercury levels, seasonal patterns of
mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses,
young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury
toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several
species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine
species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment
and risk management. Variation among species was similar for mercury and selenium. There was significant inter-
specific and intraspecific variation in selenium:mercurymolar ratios for fish, and for birds. Themean selenium:mer-
cury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to
mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, al-
though the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated
negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow
irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury
ratios below 1. No birdmuscle had an excess ofmercury (ratio below 1), and only glaucous-winged gull and pigeon
guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within
fish species, andwithin bird species,making it difficult and impractical to use these ratios in risk assessment orman-
agement, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

For many parts of the world, fishing, and fish and shellfish con-
sumption are important aspects of their culture, as well as a method
of obtaining protein (Toth and Brown, 1997). High fishing rates
occur in many different cultures, including both rural and urban
areas (Burger et al., 2001a, 2001b; Bienenfeld et al., 2003), among Na-
tive Americans (Harris and Harper, 2000; Burger et al., 2007a, 2007b),
and in other regions of the world, particularly in Asia (Burger et al.,
2003; Takezaki et al., 2003; Lu et al., 2008; Hsiao et al., 2011). Since
well over half of the world's population resides within 100 km of
oceans, it is important to understand the factors that affect the health
and safety of saltwater fish as a food source.

Fish provide many nutrients and high quality protein, yet many
people in the world are faced with deciding whether the benefits of
eating fish outweigh the risks from contaminants. Fisheries not only
provide protein and fish oil for humans, but also provide fishmeal
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for aquaculture use (Brunner et al., 2009), as well as recreational op-
portunities, cultural benefits, and esthetic pleasures (Toth and Brown,
1997; Harris and Harper, 1998; Burger, 2000, 2002). In many places,
fish and shellfish are the only readily available source of protein
that people can self-harvest, often throughout the year.

Fish consumption is associated with low blood cholesterol
(Anderson andWiener, 1995), positive pregnancy outcomes, and bet-
ter child cognitive test performances (Oken et al., 2008). Fish (and
fish oil) contain omega-3 (n−3) fatty acids that reduce cholesterol
levels and the incidence of heart disease, blood pressure, stroke, and
pre-term delivery (Kris-Etherton et al., 2002; Daviglus et al., 2002;
Patterson, 2002; Virtanen et al., 2008; Ramel et al., 2010).

Fishing and consumption of fish create three difficulties: 1) for
many parts of the world fish and shellfish are a critical and important
source of protein for people (Dorea et al., 1998; Pinheiro et al., 2009),
2) overfishing results in fish declines and a shifting of fish populations
to smaller individuals (in some cases destroying subsistence and
commercial fisheries, Pauly et al., 1998; Safina, 1998), and 3) some
fish contain contaminants (methylmercury [MeHg], PCBs) at high
enough levels to cause effects on the fish themselves (Eisler, 1987),
and on top-level predators, including humans (WHO, 1989; NRC,
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Fig. 1.Map showing sampling locations for fish collected in the Aleutian Islands, Alaska,
from 2003 to 2005.
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1996, 2000; Hightower and Moore, 2003). Fish consumption is the
most significant source of methylmercury exposure for the public
(Grandjean et al., 1997; Rice et al., 2000), and is one of the largest
contributors for other vertebrates (Eisler, 1987).

High levels of methylmercury in some fish can cause adverse
health effects in people consuming large quantities (IOM, 1991,
2006; Grandjean et al., 1997; Gochfeld, 2003; Hites et al., 2004). In fe-
tuses and young children, effects include neurodevelopmental defi-
cits (Crump et al., 1998; Steuerwald et al., 2000; NRC, 2000),
behavioral deficits (JECFA, 2003), and poorer cognitive test perfor-
mance from both fetal and childhood exposure (Oken et al., 2008;
Freire et al., 2010). In adults, methylmercury exposure counteracts
the cardioprotective effects of fish consumption (Rissanen et al.,
2000; Guallar et al., 2002), promotes cardiovascular disease (Choi et
al., 2009), and result in neurological and locomotory deficits
(Hightower and Moore, 2003).

Methods for reducing the risk from contaminants in fish include
reduction of mercury in the environment (source reduction), reduc-
ing the rates of methylation and behavioral modification of consump-
tion or cooking patterns. One of the main sources of mercury in
aquatic environments, and in the food chain, is from atmospheric de-
position, which is difficult to control globally. Countries respond to
high mercury levels in fish by issuing consumption advisories or fish-
ing bans. In the United States, it is largely the responsibility of states
to determine health risks and to issue fish and shellfish consumption
advisories. The U.S. Food and Drug Administration (USFDA, 2001,
2005) has additional responsibilities, and issued a series of consump-
tion advisories based on methylmercury for saltwater fish. The FDA
suggested that pregnant women and women of childbearing age
who may become pregnant should limit their fish consumption,
should avoid eating four types of marine fish (shark, swordfish, king
mackerel, tilefish), should limit their consumption of all other fish
to just 12 ounces per week, and should also limit consumption of
canned tuna (USFDA, 2001, 2003, 2005).

Another factor that may contribute to lowered mercury toxicity
from fish consumption may be the co-occurrence of other elements
or other foods. From the late 1960s to the 1980s experiments with
rats and other laboratory animals demonstrated the protective effects
of selenium on mercury toxicity (Satoh et al., 1985; Lindh and
Johansson, 1987). However, thereafter field and laboratory studies
identified the toxic effects of selenium in wildlife (Eisler, 2000), par-
ticularly at Kesterson in California (Ohlendorf and Hothem, 1995;
Ohlendorf, 2000). Subsequently, however, Mozaffarian (2009)
reported that lower levels of nonfatal heart attacks were associated
with higher levels of selenium, and the positive benefits of selenium
on mercury toxicity from salt water fish gained importance
(Ralston, 2008). Selenium is an essential trace element (i.e. a deficien-
cy state has been identified), and it is toxic at high levels. It is regulat-
ed in the body (Eisler, 2000). Mercury, on the other hand, has no
known essential role.

Much of mercury toxicity is mediated through binding to sulfur of
proteins. Recent attention has focused on whether any or most of the
toxicity of methylmercury is due to impaired selenium-dependent
enzyme synthesis or activity (Watanabe et al., 1999; Ralston, 2008,
2009; Ralston et al., 2008). Mercury and methylmercury are irrevers-
ible selenoenzyme inhibitors (Watanabe et al., 1999; Carvalho et al.,
2008), and they thus impair selenoprotein form and function. Mercu-
ry binds to selenium with a high affinity, and high maternal exposure
inhibits selenium-dependent enzyme activity in the brain (Berry and
Ralston, 2008). Cell culture studies and animal experiments show ad-
verse impacts of high methylmercury exposure on selenoenzymes
(particularly glutathione peroxidase and thioredoxin reductase)
occur as a result of selenium–mercury interaction, which may explain
oxidative damage attributable to methylmercury (Beyrouty and Chan,
2006; Cabanero et al., 2007; Pinheiro et al., 2009; Ralston, 2009), al-
though biokinetics differ depending on the forms of selenium and of
mercury (Dang and Wang, 2011; Sormo et al., 2011). Thus it is clear
that selenium, which is regulated in the body, can be limiting at low
levels, is essential at intermediate (or required) levels, can be toxic
at high levels, and has some potential to protect against mercury tox-
icity at some undetermined level (Eisler, 2000).

Ralston and others (Ralston, 2008; Peterson et al., 2009a, 2009b;
Sormo et al., 2011) suggested that excess selenium protects against
mercury toxicity, and that selenium:mercury molar ratios above 1 are
largely protective for adverse mercury affects. The actual selenium:
mercury ratio that would protect against mercury toxicity is unclear.
This is still a controversial issue, although Ralston (2008, 2009) and
others (Kaneko and Ralston, 2007; Raymond and Ralston, 2004, 2009;
Peterson et al., 2009a, 2009b) have argued strongly for the molar ratio
being an important value for risk assessment.

In this paper we examine inter- and intraspecific differences in sele-
nium:mercury molar ratios in a range of fish from the Aleutian Islands
(Alaska). These are species eaten by Aleuts and some species are also
fished commercially (Burger et al., 2007a). Our objectives were to de-
termine: 1) whether mean selenium:mercury molar ratios varied by
species, 2) whether mean selenium:mercury molar ratios were related
to fish species size [total length or weight], 3) whether there were indi-
vidual differences in the molar ratio within species, 4) whether within
species individual molar ratios were related to fish size, and 5)whether
mean selenium:mercury molar ratios are sufficiently constant (e.g. low
variation) to allow for use in risk assessment, risk management, or risk
communication. The Bering Sea around the Aleutian Islands provides a
significant portion of commercial fish consumed in the continental
United States, and Dutch Harbor in the Aleutians often has the largest
tonnage of fish landings in the world (AMAP, 1998). Further, subsis-
tence fish are an important part of the diet of the Aleuts living in
small and remote villages in the Aleutians (Hamrick and Smith, 2003;
Fall et al., 2006; Burger et al., 2007a, 2007b).

2. Methods

The chain of Aleutian Islands juts out from Alaska toward Russia
(Fig. 1). Some of the islands are closer to Russia than to Alaska, and
are quite small and isolated in one of the most dangerous and rugged
seas (Bering Sea). The islands are inhabited by Aleuts, Alaskan Natives
who rely on subsistence foods for much of the year. Aleut fishermen
from Atka sometimes go as far as Amchitka to catch some fish, partic-
ularly halibut. Nikolski is the oldest continually-occupied community
in North America (Black, 1974; Schlung, 2003). There are twice-
weekly flights to Adak, Atka, and Nikolski, which bring food, although
most commercial food arrives by ship.
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Fish and birds were collected in July and August 2004 from the
Aleutian Islands of Adak (52° N lat; 176° W long), Amchitka (51° N
lat; 179° E long) and Kiska (51° N lat;177° E long, Fig. 1), and fish
were collected in Spring 2005 from Nikolski (52 N lat; 168° W long)
under appropriate permits from the State of Alaska's Department of
Fish and Game (# CF-04-043). Salmon samples were also collected
from Atka (52 N lat; 174 W long) in August 2003. Amchitka and
Kiska Islands are part of the Alaska Maritime National Wildlife Refuge
that was established in 1913 by executive order of President Taft
(ATSDR, 2000). There are small Aleut communities on Adak (ca
200), Nikolski (ca 35–38) and Atka (ca 85), but Amchitka and Kiska
are currently uninhabited although they are traditional Aleut
homelands.

Fish were collected from all five islands either from land or boat,
with rod and reel by Aleuts and by scientists, and with trawling and
by spearing while underwater by scientists while on the trawlers,
Ocean Explorer or Gladiator (Fig. 1). Aleuts from Nikolski and Atka
were on the expedition to Amchitka and Kiska, and collected sam-
ples in all locations, in the traditional manner used in their villages.
Birds were collected by shotgun by Aleuts. Fish, birds, and bird eggs
were immediately measured, weighed and dissected, and samples of
muscle were frozen for later analysis. All samples were given a
unique number and had Chain of Custody forms with the following
information recorded: specimen number, species, age class where
Table 1
Mercury and selenium levels (ppm, wet weight) (μg/g), selenium:mercury molar ratios,
(2003–2005). Given are arithmetic means±SE, standard deviation and Kendall Tau correla

Common name Scientific name n Mercury
mean±SE

Selenium
mean±SE

Se
(M

Fish
Great sculpin Myoxocephalus

polyacanthocephalus
27 0.37±0.06 0.55±0.03 3.8

Yellow irish lord Hemilepidotus jordani 68 0.28±0.02 0.34±0.02 3.0
Flathead sole Hippoglossoides elassodon 39 0.28±0.01 0.40±0.04 3.6
Pacific cod Gadus macrocephalus 140 0.17±0.01 0.18±0.01 2.6
Black rockfish Sebastes melanops 65 0.17±0.02 0.57±0.02 8.7
Pacific halibut Hippoglossus stenolepis 24 0.16±0.04 0.37±0.03 6.0
Red irish lord Hemilepidotus hemilepidotus 56 0.13±0.01 0.24±0.04 4.7
Dolly varden Salvelinus malma 75 0.11±0.01 0.35±0.04 7.7
Rock greenling Hexagrammos lagocephalus 82 0.10±0.01 0.20±0.01 5.1
Rock sole Lepidopsetta bilineate 27 0.09±0.01 0.54±0.06 14
Walleye pollock Theragra chalcogramma 12 0.07±0.02 0.46±0.02 15
Northern rock
sole

Lepidopsetta polyxystra 15 0.07±0.01 0.47±0.03 17

Pacific Ocean
perch

Sebastes alutus 17 0.05±0.01 0.88±0.05 46

Atka mackerel Pleurogrammus
monopterygius

19 0.05±0.00 0.41±0.04 22

Sockeye salmon Oncorhynchus nerka 15 0.04±0.01 0.25±0.03 14
Kruskal Wallis
χ2 (p)

222
(b0.0001)

336
(b0.0001)

24
(b

Invertebrate
Octopus Octopus dofleini 5 0.04±0.01 0.23±0.04 15

Bird muscle
Bald eagle Haliaeetus leucocephalus 1 1.74c 3.9c 5.7
Pigeon guillemot Cepphus columba 21 0.49±0.04 1.04±0.08 5.3
Glaucous-winged
gull

Larus glaucescens 32 0.33±0.03 1.05±0.11 8.1

Common eider Somateria mollissima 20 0.12±0.01 0.78±0.07 16
Tufted puffin Fratercula cirrhata 8 0.12±0.02 3.10±0.43 65

Kruskal Wallis
χ2 (p)

55.9
(b0.0001)

20.6
(0.0004)

45
(b

Bird eggs
Glaucous-winged
gull

Larus glaucescens 21 0.70±0.07 1.57±0.09 5.6

common eider Somateria mollissima 54 0.43±0.02 1.73±0.14 10
Kruskal Wallis
χ2 (p)

12.2
(0.0005)

0.04 (NS) 8.8

a The Se/Hg molar ratios are calculated on unrounded mean Hg and Se values.
b Length measurements are not available.
c No standard error or correlation because N=1.
appropriate, date, island, location from that island, collector, and
preparator. All samples were shipped frozen to the Environmental
and Occupational Health Sciences Institute (EOHSI) of Rutgers Uni-
versity for metal analysis. Most samples were collected as part of re-
search by the Consortium for Risk Evaluation with Stakeholder
Participation (CRESP) to examine radionuclide levels in marine
biota for the Department of Energy (Burger et al., 2007a). Levels of
all anthropogenic radionuclides examined were well below safe
human health risk guidance levels (Powers et al., 2005). Scientific
names for all species examined in the present study are given in
Table 1.

At EOHSI, a 2 g (wet weight) sample of tissue was digested in trace
metal grade nitric acid in a microwave (MD 2000 CEM), using a diges-
tion protocol of three stages of 10 min each under 50, 100 and
150 pounds per square inch (3.5, 7, and 10.6 kg/cm2) at 80% power.
Digested samples were subsequently diluted to 25 ml with deionized
water. Instruments and containers were washed in 10% HNO3 solu-
tion and rinsed with deionized water, prior to each use (Burger et
al., 2001a, 2001b, 2007a).

Selenium was analyzed by graphite furnace atomic absorption,
with a detection limit of 0.0007 μg/g. Mercury was analyzed by the
cold vapor technique using the Perkin Elmer FIMS-100 mercury ana-
lyzer, with an instrument detection level of 0.0002 μg/g, and a matrix
level of quantification of 0.002 μg/g. DORM-2 Certified dogfish tissue
and relationship to size for fish species collected from the Aleutian Islands, Alaska
tion coefficients.

:Hg ratio
eans)a

Se:Hg ratio correlation
with Hg tau (p)

Se:Hg ratio correlation
with length tau (p)

Se:Hg ratio correlation
with Weight tau (p)

0 −0.78 (b0.0001) −0.31 (0.03) −0.55 (b0.0001)

9 −0.70 (b0.0001) −0.16 (NS) −0.15 (0.07)
5 −0.3 (0.007) −0.08 (NS) −0.07 (NS)
9 −0.65 (b0.0001) −0.39 (b0.0001) −0.38 (b0.0001)
3 −0.73 (b0.0001) −0.31 (0.0004) −0.32 (0.0002)
0 −0.75 (b0.0001) −0.53 (0.0003) 0.51 (0.0005)
3 −0.57 (b0.0001) −0.25 (0.009) −0.23 (0.01)
8 −0.59 (b0.0001) 0.23 (0.004) 0.19 (0.02)
1 −0.68 (b0.0001) −0.20 (0.008) −0.22 (0.004)
.90 −0.49 (0.0004) −0.14 (NS) −0.17 (NS)
.85 −0.85 (0.0001) −0.43 (0.05) −0.41 (0.06)
.58 −0.50 (0.01) 0.11 (NS) −0.09 (NS)

.42 −0.91 (b0.0001) −0.62 (0.0007) −0.60 (0.0007)

.56 −0.54 (0.001) −0.04 (NS) −0.10 (NS)

.92 −0.46 (0.02) b b

2
0.0001)

.44 −1.00 (0.01) b −0.82 (NS)

1 c

5 −0.30 (0.06)
3 −0.39 (0.002)

.19 −0.19 (NS)

.06 −0.6 (0.03)

.6
0.0001)

7 −0.61 (0.0001)

.20 −0.24 (0.01)
(0.003)



Fig. 2. Relationship between mean selenium:mercury molar ratios and mean mercu-
ry levels for fish from the Aleutians. Kendall tau=−0.6 for the relationship between
selenium:mercury molar ratio and mean mercury levels.

Fig. 3. Relationship between mean selenium:mercury molar ratios and mean total fish
length for fish from the Aleutians. There was not a significant relationship between the
ratio and mean fish length among fish species.
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was used as the calibration verification standard. Recoveries between
90–110% were accepted to validate the calibration. All specimens
were run in batches that included blanks, a standard calibration
curve, one spiked specimen, and one duplicate. The accepted recover-
ies for spikes ranged from 85% to 115%; no batches were outside of
these limits. 10% of samples were digested twice and analyzed as
blind replicates (with agreement within 15%).

All concentrations (total mercury) are expressed in μg/g
(=ppm=parts per million) on a wet weight basis. Ppm is the unit
used by state and federal agencies when communicating with the pub-
lic generally, and when discussing risk from fish consumption. People
may dry some foods before consumption, for example salmon. We
found that dryweight for cold-water fish examined in this study ranged
from 18 to 24%. Thus a dry weight equivalent would be 4–5 x higher
than the values published here.

This paper reports on total mercury and total selenium levels,
without speciation. However, many studies have shown that almost
all of the mercury in fish and avian tissue is methylmercury, and
90% is a reasonable approximation of this proportion, which varies
somewhat among types, laboratories, and seasons (Lansens et al.,
1991; Jewett et al., 2003; Cabanero et al., 2007; Scudder et al.,
2009). However, future work should involve speciation, at least of a
subsample, since it is important to speciate mercury when inter-
preting the protective effects of selenium (Khan and Wang, 2009;
Lemes andWang, 2009), especially for mammals (Lemes et al., 2011).

While dissecting Pacific cod, we removed a sample of 46 otoliths
for age identification. Delsa Anderi of NOAA identified the ages of
these samples.

For each species a mean selenium:mercury molar ratio was calcu-
lated from the average selenium and average mercury levels (see
Table 1) by dividing concentration (in μg/g) by the molecular weight
(200.59 for mercury and 78.96 for selenium). This is the usual method
used to determine molar ratios in the literature, partly because some
of the calculations have been done from the published literature,
rather than by the authors conducting the studies (who had the orig-
inal data). Therefore, we calculated the ratios from the means to be
consistent with the literature and allow comparisons. Note that
some papers report the mercury:selenium ratio rather than the sele-
nium:mercury reported in this paper (e.g. Cappon and Smith, 1981).
Se:Hg is the reciprocal of Hg:Se.

We used KruskalWallis X2 values to test for differences in mercury
levels, selenium levels, and the selenium:mercury molar ratios among
fish species and locations, and Kendall Tau correlations to examine
the relationship between the molar ratios and mercury levels, and
between the molar ratios and fish size (e.g. length) (SAS, 2005).
The level for significance was designated asb0.05. Hereafter the
term selenium:mercury refers to the selenium:mercury molar ratio.

3. Results

3.1. Interspecific differences

There are interspecific differences inmercury and selenium levels, and
in the selenium:mercurymolar ratio for fish and for bird muscle. For bird
eggs (smaller sample of species), onlymercury and the selenium:mercury
molar ratiowere significantly different (Table 1).Whenallfish species are
considered together, the mean selenium:mercury ratio was negatively
correlated with mean mercury levels (Fig. 2), but was not significantly
correlated with mean total fish length (Fig. 3). This lack of correlation
was not only due towalleye pollock. Similar relationshipswere not exam-
ined for the birds which have determinate growth.

3.2. Intraspecific differences

For the 14 species for which length and weight data were available,
the selenium:mercurymolar ratiowas significantly negatively correlated
with length of fish for 8 of 14 species andwithweight for 7 of 14 species
(Table 1). The ratiowas positively correlatedwith length andweight for
dolly varden. For halibut the ratio was negatively correlatedwith length
and positively with weight. Being negatively correlated means that as
fish size increased, the selenium:mercurymolar ratio decreased (i.e. se-
lenium provides less protection from mercury toxicity).

For risk assessors or managers to successfully use selenium:
mercury relationships in risk assessment there should be low intra-
specific variation, but if there is variation, it should relate to size.
The selenium:mercury molar ratios for all individuals' samples for
each species examined are shown in Figs. 4–7. The variation within
species was great, with some individuals falling below a selenium:
mercury ratio of 1 for Pacific cod, yellow irish lord, flathead sole,
great sculpin, rock greenling, halibut, and dolly varden (Figs. 4 and
5). For all fish, except walleye pollock, northern rock sole, Pacific
ocean perch, and Atka mackerel, there were some Se:Hg values be-
tween 1 and 5.

Similarly, there was individual variation within a species for all the
bird species (Fig. 8). None of the birds had selenium:mercury molar
ratios below 1, and only glaucous-winged gull and pigeon guillemot
had values between 1 and 5. Both gull and eider eggs had selenium:
mercury molar ratios between 1 and 5 (Fig. 9).

image of Fig.�2
image of Fig.�3


Fig. 4. Individual selenium:mercury molar ratios for Pacific cod, yellow irish lord, flathead sole and great sculpin collected from the Aleutians. Kendall tau correlations indicate
whether there was a significant relationship between the ratio and length for each species.
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4. Discussion

4.1. Interspecific and intraspecific variation: trophic level considerations

In general, fish that are large and high on the trophic scale have
higher mercury levels than smaller, herbivorous fish. Mercury levels
are usually correlated with fish size (weight or length), both within
and among species (Green and Knutzen, 2003; Storelli et al., 2002;
Simonin et al., 2008; Burger and Gochfeld, 2011), and elimination rate
is also negatively correlated with size (Trudel and Rasmussen, 1997).
Thus, species of fish that are large may have low selenium:mercury ra-
tios because selenium is regulated in the body (Eisler, 2000), and mer-
cury levels increase with size and trophic level (Power et al., 2002).
Small species of fish, on the contrary, may have a range of ratios from
low to high because at low mercury levels, the size relationship may
not hold (Park and Curtis, 1997). Further, some smaller fish species
are bottom feeders, and acquire moderate or high mercury levels from
prey that reside in the sediment (Campbell, 1994), and someherbivores
can have high levels of metals (Tayel and Shriadah, 1996).

In this study of 15 species of fish from the Aleutians, we found
that: 1) there were interspecific differences in mercury and selenium
levels, and in the selenium:mercury molar ratios in both fish and bird
muscle, 2) there was a significant difference in mercury levels but not
selenium levels for eggs of gulls and eiders, 3) the ratios were
negatively correlated with fish length for 8 of 14 species, 4) the ratios
were negatively correlated with fish weight for 7 of 14 species with
data, (only dolly varden showed a positive correlation of ratio with
length and width, 5) mean selenium:mercury molar ratios were neg-
atively correlated with mean mercury levels for the fish species, but
not with mean length, 6) individuals of many fish species had some
ratios below 1, and more ratios between 1 and 5, and 7) no individual
birds had ratios below 1.

These data indicate that for fish species, there is sometimes a sig-
nificant relationship between the selenium:mercury molar ratio and
length, but the relationship is generally negative. This means that as
the fish get bigger and mercury levels increase, the ratio decreases,
and the potential protective effect of selenium decreases. There was
a great deal of variation among individuals of the same species. That
is, knowing the mean selenium:mercury molar ratio for a given spe-
cies did not necessarily predict whether any individuals had ratios
below 5, or below 1, or even the frequency of low ratios. This is the
result of individual variation in both selenium and mercury levels,
which is partly a result of differences in prey, the proportion of differ-
ent prey items in the diet, and foraging location (Watras et al., 1998;
Snodgrass et al., 2000; Burger and Gochfeld, 2011). Dietary uptake ac-
counts for more than 90% of the total uptake (Wiener et al., 2003).

In this study, the species that had the highest trophic level (cod,
sculpin, Irish lords), and were predators, had the lowest selenium:

image of Fig.�4


Fig. 5. Individual selenium:mercury molar ratios for rock greenling, halibut, dolly verden and black rockfish collected from the Aleutians. Kendall tau correlations indicate whether
there was a significant relationship between the ratio and length for each species.
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mercury molar ratios, and those that were lower, had higher selenium:
mercury molar ratios (perch, sole). Further, fish that had longer
lifespans (halibut, greenling, rockfish) tended to have lower selenium:
mercury molar ratios. Thus, fish species that have longer lifespans and
are at a higher trophic levels had lower selenium:mercury ratios, and
thus selenium levels would likely be less protective than fish with
higher ratios.

4.2. Age vs size variation in Pacific cod

As mentioned above, mercury levels usually increase with size of
the fish (both within and among species), and are generally higher
in higher trophic level fish (Watras et al., 1998; Wiener et al., 2003).
Size is usually related to age within a given species, as with time,
fish grow larger. Usually, however, age is not known, and size is
used as a surrogate for age (Boening, 2000). Where age was known,
age was more strongly correlated with mercury levels than was size
(although size was highly correlated; Braune, 1987; Burger and
Gochfeld, 2007). Age and mercury are more highly correlated in
food limited environments because growth (either weight gain or
size) is stunted, resulting in older fish that are not significantly larger
than younger fish.

Otoliths can be used to age fish, and we did so in the study of mer-
cury in Pacific cod from the Aleutians (Burger and Gochfeld, 2007, the
same cod examined in the present paper). In this study, the selenium:
mercury molar ratio was correlated with age, and the correlation was
about the same (0.31) compared to length=0.39.

4.3. Selenium:mercury molar ratios in saltwater fish

It is important to understand mercury levels in saltwater fish be-
cause they are an important food source for people, and other preda-
tors, although ratios in freshwater fish are also important, particularly
for recreational fishers (Burger, 2012). Large predatory fish, such as
shark, swordfish, and tuna bioaccumulate high levels of mercury,
and may have mechanisms for demethylating mercury. For decades,
studies mainly reported levels of mercury in different fish species,
but attention is now focusing on levels of selenium as well (Kaneko
and Ralston, 2007; Burger and Gochfeld, 2011; Burger, 2012). Al-
though most studies still do not report selenium levels, it is essential
to understand variations in selenium:mercury molar ratios before in-
terspecific and geographical patterns can be identified.

Because of the wide range in fish sizes, trophic levels, and foraging
methods, there can be a great deal of variation in selenium and mer-
cury levels, and in the selenium:mercury molar ratios. Thus, the range
in the mean selenium:mercury molar ratios for marine fish varies
markedly among regions: 1) 0.46 to 17.6 for 15 species from Hawaii
(Kaneko and Ralston, 2007), 2) 0.58 to 12.5 for 11 commercial species
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Fig. 6. Individual selenium:mercury molar ratios for red irish lord, rock sole, walleye Pollock and northern rock sole collected from the Aleutians. Kendall tau correlations indicate
whether there was a significant relationship between the ratio and length for each species.
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(Cappon and Smith, 1981; but they selected mainly predatory species
and evaluated only 1–4 individuals/species each), 3) 3–22 for 4 spe-
cies from Spain and Portugal (Cabanero et al., 2005), 4) 2.0 to 17.3
Fig. 7. Individual selenium:mercury molar ratios for Pacific ocean perch and Atka mackerel
nificant relationship between the ratio and length for each species.
for three species from Spain (Cabanero et al., 2007), and 5) 0.36 to
over 60 for 19 recreationally caught species from New Jersey
(Burger and Gochfeld, 2012).
collected from the Aleutians. Kendall tau correlations indicate whether there was a sig-
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Fig. 8. Individual selenium:mercury molar ratios for muscle of common eider, glaucous-winged gull, pigeon guillemot and tufted puffin collected from the Aleutians. Kendall tau
correlations indicate whether there was a significant relationship between the ratio and mercury levels for each species.
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In the present study, we found that the mean selenium:mercury
molar ratios for 15 marine fish ranged from 2.7 to 45.4. Considerably
more data are required before generalizations about selenium:mercury
Fig. 9. Individual selenium:mercury molar ratios for eggs of common eider and glaucous-wi
was a significant relationship between the ratio and mercury levels for each species.
ratios can be made. It is also useful to compare the molar ratios for the
same species from different regions or circumstances. For example,
the selenium:mercury molar ratio for Pacific cod collected from
nged gull collected from the Aleutians. Kendall tau correlations indicate whether there
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supermarkets in New Jersey was 16.5, whereas in the present study it
was 2.69. It is possible that the supermarket sample was either hetero-
geneous or mislabeled (Lowenstein et al., 2010), or that very different
sized fish were sampled (it is difficult to determine size in fish pur-
chased from markets). Further, those from the Aleutians were from a
rather narrow zone, while those that reach the commercial market
could be from the entire Bering Sea.

Selenium:mercury molar ratios have not been considered in birds,
largely because there is no commercial sale of birds, and scientists and
others examining the potential positive benefit of these ratios have
not considered birds as a important subsistence food nor as an impor-
tant source of mercury exposure. In this study, the mean selenium:
mercury molar ratios for birds were all above 5, and in general, few in-
dividuals within each species had ratios below 5, and none had ratios
below 1.

4.4. Protective effect of selenium and risk assessment

Understanding the factors that affect methylmercury toxicity is
critical to reducing potential effects, particularly for fetuses and
young children. One conservative estimate is that 250,000 women
may be exposing their fetuses to levels of methylmercury above fed-
eral health guidelines (i.e. the EPA Reference dose; Hughner et al.,
2008), while Trasande et al. (2005) estimate the proportion of fetuses
in jeopardy is much higher (7.8 to 15.7%). There is some indication
that the FDA warnings about fish consumption have resulted in a re-
duction in the consumption of fish generally, and of canned tuna spe-
cifically (Shimshack et al., 2007). This may not be a positive outcome,
given that fish are a healthy source of protein that has a number of
health benefits. Further, Groth (2010) recently showed that, with
the exception of swordfish, relatively high mercury fish make up a
small share of fish and shellfish consumption in the U.S. To make
sure that warnings about mercury do not reduce consumption of
low mercury species, the fish consuming public, particularly sensitive
populations, need information to make informed decisions about sea-
food safety (Gochfeld and Burger, 2005; IOM, 2006).

The potential ability of selenium to reduce mercury toxicity sug-
gests that risk assessors and managers can consider this factor
(Ralston, 2009). Ralston and others suggested that selenium:mercury
molar ratios above 1 (or some other ratio) are protective for adverse
mercury affects (Ralston, 2008; Peterson et al., 2009a, 2009b), but the
actual ratio that is protective is unclear (Ralston et al., 2008; Burger
and Gochfeld, 2012). There is no biological basis for identifying an ab-
solute selenium:mercury ratio that is protective; indeed selenium
binds many other cations, and any protection conferred would be rel-
ative (Lemire et al., 2010).

It is clear that selenium confers some protective benefits, on genetic
damage and on cancer (El-Bayoumy, 2001), as well as on mercury tox-
icity (Tran et al., 2007; Ralston, 2008; Peterson et al., 2009a;
Chatziargyriou and Dailianis, 2010, references in introduction). A
range of epidemiologic, laboratory and human clinical intervention tri-
als support a protective role for selenium against cancer development,
and that selenium plays a protective role with respect to mercury (El-
Bayoumy, 2001; Chatziargyriou and Dailianis, 2010). Selenium plays a
role in antioxidant enzymes (Tran et al., 2007), especially for mammals
(Speier et al., 1985) and bivalves (Chatziargyriou and Dailianis, 2010).

4.5. Risk management

If selenium in marine fish, especially commercial marine fish, can
reduce the toxicity of mercury, then it is another factor that should
be considered in risk assessment and risk management. The practical
implications of the modification of mercury toxicity by selenium are
unclear (Watanabe, 2002). We suggest caution before selenium:mer-
cury ratios become part of the considerations for mercury toxicity
regulations or advisories, and that selenium:mercury ratios should
be used only in conjunction with mercury levels.

In this study, with fish species that are consumed by Aleuts (often
subsistence fishing) and are important commercial species, we found
several key aspects of relevance for risk assessors, risk managers, and
consumers: 1) all mean selenium:mercury molar ratios for fish, birds,
and bird eggs were above 1, 2) there was a great deal of variation both
within and among species in these ratios, 3) the ratio (and any pro-
tectiveness) generally decreased with increasing fish length and in-
creasing mercury level, and 4) the individual variation in selenium:
mercury molar ratios for all the fish and bird species, which often in-
volved some individuals with values below 1, was sufficiently great to
make it difficult to generalize either about species, or individuals
within a species, or size relationships within a species. Thus risk as-
sessors and managers, public health officials, and consumers cannot
easily use these ratios in making decisions.

Finally, it should be mentioned that mercury is only one contami-
nant of concern for saltwater fish. Polychlorinated biphenyls (PCBs),
organochlorine pesticides, and other contaminants can pose a risk,
and should be considered when evaluating and managing risk. For ex-
ample, the levels of PCBs in the fish reported in this sample pose a risk
to people who consume large quantities, particularly of rock green-
ling, dolly varden, and flathead sole, all fish that are relatively low
on the food chain (Hardell et al., 2010) and all fish that had some of
the lowest selenium:mercury molar ratios in the present study. This
study is one of the few where mercury (Burger et al., 2007a), PCBs
and organochlorine pesticides (Hardell et al., 2010) were examined
in the same fish. Some of the fish that had low mercury levels, had
high PCB levels, suggesting the importance of doing multi-
contaminant risk assessments, with appropriate risk management.
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